Notes on Chow points of algebraic varieties.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian Points on Algebraic Varieties

We attempt to determine which classes of algebraic varieties over Q must have points in some abelian extension of Q. We give: (i) for every odd d > 1, an explicit family of degree d, dimension d − 2 diagonal hypersurfaces without Qab-points, (ii) for every number field K, a genus one curve C/Q with no K ab-points, and (iii) for every g ≥ 4 an algebraic curve C/Q of genus g with no Qab-points. I...

متن کامل

Points of Bounded Height on Algebraic Varieties

Introduction 1 1. Heights on the projective space 3 1.1. Basic height function 3 1.2. Height function on the projective space 5 1.3. Behavior under maps 7 2. Heights on varieties 9 2.1. Divisors 9 2.2. Heights 13 3. Conjectures 19 3.1. Zeta functions and counting 19 3.2. Height zeta function 20 3.3. Results and methods 22 3.4. Examples 24 4. Compactifications of Semi-Simple Groups 26 4.1. A Con...

متن کامل

Density of integral points on algebraic varieties

Let K be a number field, S a finite set of valuations of K, including the archimedean valuations, and OS the ring of S-integers. LetX be an algebraic variety defined over K and D a divisor on X. We will use X and D to denote models over Spec(OS). We will say that integral points on (X,D) (see Section 2 for a precise definition) are potentially dense if they are Zariski dense on some model (X ,D...

متن کامل

Counting Rational Points on Algebraic Varieties

In these lectures we will be interested in solutions to Diophantine equations F (x1, . . . , xn) = 0, where F is an absolutely irreducible polynomial with integer coefficients, and the solutions are to satisfy (x1, . . . , xn) ∈ Z. Such an equation represents a hypersurface in A, and we may prefer to talk of integer points on this hypersurface, rather than solutions to the corresponding Diophan...

متن کامل

Counting Rational Points on Algebraic Varieties

For any N ≥ 2, let Z ⊂ P be a geometrically integral algebraic variety of degree d. This paper is concerned with the number NZ(B) of Q-rational points on Z which have height at most B. For any ε > 0 we establish the estimate NZ(B) = Od,ε,N (B ), provided that d ≥ 6. As indicated, the implied constant depends at most upon d, ε and N . Mathematics Subject Classification (2000): 11G35 (14G05)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 1953

ISSN: 2156-2261

DOI: 10.1215/kjm/1250777426